Gauss-Bonnet formula, finiteness condition, and characterizations for graphs embedded in surfaces
نویسندگان
چکیده
Let G be an infinite graph embedded in a closed 2-manifold, such that each open face of the embedding is homeomorphic to an open disk and is bounded by finite number of edges. For each vertex x of G, define the combinatorial curvature KG(x) = 1− d(x) 2 + ∑ σ∈F (x) 1 |σ| as that of [9], where d(x) is the degree of x, F (x) is the multiset of all open faces σ in the embedding such that the closure σ̄ contains x (the multiplicity of σ is the number of times that x is visited along ∂σ), and |σ| is the number of sides of edges bounding the face σ. In this paper, we first show that if the absolute total curvature ∑ x∈V (G) |KG(x)| is finite, then G has only finite number of vertices of non-vanishing curvature. Next we present a Gauss-Bonnet formula for embedded infinite graphs with finite number of accumulation points. At last, for a finite simple graph G with 3 ≤ dG(x) < ∞ and KG(x) > 0 for all x ∈ V (G), we have (i) if G is embedded in a projective plane and #(V (G)) = n ≥ 1722, then G is isomorphic to Pn; (ii) if G is embedded in a sphere and # ( V (G) ) = n ≥ 3444, then G is isomorphic to either An or Bn; and (iii) if dG(x) = 5 for all x ∈ V (G), then there are only 49 possible embedded plane graphs and 16 possible embedded projective plane graphs.
منابع مشابه
Total Curvature of Complete Surfaces in Hyperbolic Space
We prove a Gauss-Bonnet formula for the extrinsic curvature of complete surfaces in hyperbolic space under some assumptions on the asymptotic behaviour.
متن کاملGauss-bonnet-chern Formulae and Related Topics for Curved Riemannian Manifolds
In this paper, we survey recent results on Gauss-Bonnet-Chern formulae and related issues for closed Riemannian manifolds with variable curvature. Among other things, we address the following problem: “if M is an oriented 2n-dimensional closed manifold with non-positive curvature, then is it true that its Euler number χ(M) satisfies the inequality (−1)χ(M) ≥ 0?” We will present some partial ans...
متن کاملThe Gauss-Bonnet Formula of Polytopal Manifolds and the Characterization of Embedded Graphs with Nonnegative Curvature
Let M be a connected d-manifold without boundary obtained from a (possibly infinite) collection P of polytopes of R by identifying them along isometric facets. Let V (M) be the set of vertices of M . For each v ∈ V (M), define the discrete Gaussian curvature κM (v) as the normal angle-sum with sign, extended over all polytopes having v as a vertex. Our main result is as follows: If the absolute...
متن کاملOn a Conformal Gauss-bonnet-chern Inequality for Lcm Manifolds and Related Topics
In this paper, we prove the following two results: First, we study a class of conformally invariant operators P and their related conformally invariant curvatures Q on even-dimensional Riemannian manifolds. When the manifold is locally conformally flat(LCF) and compact without boundary, Q-curvature is naturally related to the integrand in the classical Gauss-Bonnet-Chern formula, i.e., the Pfaf...
متن کاملOn a Conformal Gauss-bonnet-chern Inequality for Lcf Manifolds and Related Topics
In this paper, we prove the following two results: First, we study a class of conformally invariant operators P and their related conformally invariant curvatures Q on even-dimensional Riemannian manifolds. When the manifold is locally conformally flat(LCF) and compact without boundary, Q-curvature is naturally related to the integrand in the classical Gauss-Bonnet-Chern formula, i.e., the Pfaf...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005